2517: count order

Memory Limit:128 MB Time Limit:1.000 S
Judge Style:Text Compare Creator:
Submit:1 Solved:1

Description

Problem Statement

We have two permutations P and Q of size N (that is, P and Q are both rearrangements of (1, 2, ..., N)).
There are N! possible permutations of size N. Among them, let P and Q be the a-th and b-th lexicographically smallest permutations, respectively. Find |a−b|. 

Notes

For two sequences X and Y, X is said to be lexicographically smaller than Y if and only if there exists an integer k such that Xi=Yi (1i<k) and Xk<Yk

Constraints

  • 2N8
  • P and Q are permutations of size N.



Input

Input is given from Standard Input in the following format:

N 
P1  P2 ......PN
Q1  Q2...... QN 


Output

Print |ab|.


Sample Input 1

3
1 3 2
3 1 2

Sample Output 1

3
There are 6 permutations of size 3(1, 2, 3)(1, 3, 2)(2, 1, 3)(2, 3, 1)(3, 1, 2), and (3, 2, 1). Among them, (1, 3, 2) and (3, 1, 2) come 2-nd and 5-th in lexicographical order, so the answer is |25|=3

Sample Input Copy

3
1 3 2
3 1 2

Sample Output Copy

3